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ABSTRACT
Reliability is extremely important for large-scale cloud systems like
Microsoft 365. Cloud failures such as disk failure, node failure, etc.
threaten service reliability, resulting in online service interruptions
and economic loss. Existing works focus on predicting cloud failures
and proactively taking action before failures happen. However, they
suffer from poor data quality like data missing inmodel training and
prediction, which limits the performance. In this paper, we focus on
enhancing data quality through data imputation by the proposed
Diffusion+, a sample-efficient diffusionmodel, to impute themissing
data efficiently based on the observed data. Our experiments and
application practice show that our model contributes to improving
the performance of the downstream failure prediction task.

CCS CONCEPTS
• Computer systems organization → Cloud computing; •
Hardware → Failure prediction.
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1 INTRODUCTION
Microsoft 365 cloud platform is a large-scale online service system
and serves millions of customer workloads on a 24/7 basis. It is
extremely critical to ensure high reliability as any cloud failure will
result in financial loss and degradation of user experience [8, 15, 18].
However, cloud failure, including hardware failure and software fail-
ure, is inevitable in large-scale systems [4, 13, 29]. Recent research
and works [8, 21, 25, 27] have proposed approaches to predict cloud
failures before they actually happen and take actions proactively
to mitigate potential failures, thus minimizing the negative impact
of cloud failure. Although significant progress has achieved good
results in practice, these failure prediction methods still suffer from
the issues of data missing [6, 9, 25]. Data missing is a practical and
ubiquitous problem in large cloud systems caused by data delay [24],
monitoring error [37], etc. In this paper, rather than designing bet-
ter failure prediction models, we focus on a new perspective of
enhancing the data quality by imputing missing data to improve
the performance of downstream cloud failure prediction.

There exist a large number of studies of data imputation con-
cerning images and time series data [5, 12, 30, 36]. However, very
few focus on time series data imputation in the domain of cloud
systems, and rules-based and statistical approaches are commonly
used in industry [27]. Most importantly, there lacks an end-to-end
evaluation of data imputation with the downstream tasks, and the
effect of different data imputation methods is still unexplored con-
necting to the downstream tasks that utilize the data. In this paper,
we leverage the success of the diffusion models [14, 33], which have

Figure 1: The overview of data imputation with downstream
failure prediction tasks.

outperformed state-of-the-art generative models with higher sam-
ple quality, and we propose a new diffusion model, i.e., Diffusion+,
to impute missing data with high efficiency. Figure 1 shows the
overview of the process. We use the diffusion model to do data im-
putation, and the imputed data is fed into the downstream failure
prediction task for model training and prediction. We select disk
failure prediction as the downstream task since disk failure is one of
the most frequent failures in cloud systems [4, 32], and our model
can be easily adapted to other downstream tasks in cloud scenarios.
Moreover, the slow sampling issue of the diffusion model restricts
its application in industry. Inspired by the most recent work [23],
we improve the diffusion sampling efficiency with at least 4× speed
up without degrading the downstream prediction task.

Our main contributions are summarized as follows:
• We propose a new perspective of improving cloud failure
prediction by imputing missing data.

• Inspired by the diffusion model, we propose a new diffu-
sion model with better imputation performance and higher
sampling efficiency in the cloud scenario.

• We conduct extensive experiments on industrial data and
demonstrate that our model improves the performance on
the downstream task.

2 METHODOLOGY
2.1 Problem Formulation
In practice, a disk’s status vector is recorded at each timestamp (e.g.,
hourly), which is a multivariate time series data 𝑥 ∈ R𝐾×𝐿 where
𝐾 is the number of features and 𝐿 is the length of time series. At
each timestamp 𝑙 , some data features are missing in 𝑥𝑙 , then we can
partition 𝑥𝑙 into the missing part 𝑥𝑚𝑠

𝑙
= {𝑥𝑘

𝑙
|𝑥𝑘
𝑙
is missing}1:𝐾 and

the observed part 𝑥𝑜𝑏
𝑙

= {𝑥𝑘
𝑙
|𝑥𝑘
𝑙
is observed}1:𝐾 , i.e., 𝑥𝑙 = 𝑥𝑚𝑠𝑙 ∪𝑥𝑜𝑏

𝑙
.
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Figure 2: Data imputation with the reverse process of the
diffusion model.

Our goal is to do data imputation for 𝑥𝑚𝑠 = {𝑥𝑚𝑠
𝑙

}1:𝐿 given 𝑥𝑜𝑏 =

{𝑥𝑜𝑏
𝑙

}1:𝐿 for all status feature vectors 𝑥 , and the imputed status
feature vectors are then fed toward downstream prediction tasks,
which is trained to predict whether a disk will fail or not.

2.2 Overview of Diffusion+ Model
Denoising diffusion probabilistic models (DDPM) [14, 33], known as
diffusion models (DM) for brevity, are a class of generative models
inspired by non-equilibrium thermodynamics. DMs consist of a
forward process and a reverse process. In the forward process, DMs
define a fixed Markov chain of 𝑇 diffusion steps to slowly add
noise to the data 𝑥0 ∈ R𝐾×𝐿 until the data distribution is close to a
standard Gaussian distribution 𝑥𝑇 ∈ R𝐾×𝐿 . Note that the subscripts
in 𝑥0 and 𝑥𝑇 represent the diffusion step, i.e., 𝑥0 = {𝑥0,𝑙 }1:𝐿 , and we
omit 𝑙 for simplicity. The forward process is defined as:

𝑞(𝑥1:𝑇 |𝑥0) =
𝑇∏
𝑡=1

𝑞(𝑥𝑡 |𝑥𝑡−1),

𝑞(𝑥𝑡 |𝑥𝑡−1) = N(𝑥𝑡 ;
√︁
1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡 I),

(1)

where 𝛽1, 𝛽2, · · · , 𝛽𝑇 are the fixed noise schedulers for controlling
the noise scale [14].

On the other hand, in the reverse process, DMs learn to reverse
the forward process by denoising to get the desired data distribution
from the noise distribution, i.e., sampling from 𝑞(𝑥𝑡−1 |𝑥𝑡 ) will be
able to create the true sample 𝑥0 from a Gaussian noise 𝑥𝑇 . However,
it is non-trivial to estimate 𝑞(𝑥𝑡−1 |𝑥𝑡 ), and we learn to model 𝑝𝜃 (·)
as the approximate estimation. We adopt the conditional diffusion
model [36] which uses the observation 𝑥𝑜𝑏0 as the condition to
generate imputation targets 𝑥𝑚𝑠0 . More specifically, the goal of
data imputation is to estimate the true conditional data distribution
𝑞(𝑥𝑚𝑠0 |𝑥𝑜𝑏0 ) with a model distribution 𝑝𝜃 (𝑥𝑚𝑠0 |𝑥𝑜𝑏0 ), and the missing
data 𝑥𝑚𝑠0 can be sampled from 𝑝𝜃 (·) as shown in Figure 2. Wemodel
𝑝𝜃 (𝑥𝑚𝑠0 |𝑥𝑜𝑏0 ) with the diffusion model in the reverse process:

𝑝𝜃 (𝑥𝑚𝑠
0:𝑇 |𝑥𝑜𝑏0 ) = 𝑝 (𝑥𝑚𝑠

𝑇 )
𝑇∏
𝑡=1

𝑝𝜃 (𝑥𝑚𝑠
𝑡−1 |𝑥𝑚𝑠

𝑡 , 𝑥𝑜𝑏0 ), 𝑥𝑚𝑠
𝑇 ∼ N(0, 𝑰 ),

𝑝𝜃 (𝑥𝑚𝑠
𝑡−1 |𝑥𝑚𝑠

𝑡 , 𝑥𝑜𝑏0 ) = N(𝑥𝑚𝑠
𝑡−1; 𝝁𝜃 (𝑥𝑚𝑠

𝑡 , 𝑡 |𝑥𝑜𝑏0 ), 𝜎𝜃 (𝑥𝑚𝑠
𝑡 , 𝑡 |𝑥𝑜𝑏0 )𝑰 )

(2)

We define a conditional denoising function 𝜖𝜃 in the reverse pro-
cess to estimate 𝝁𝜃 (·) and𝜎𝜃 (·) of the distribution 𝑝𝜃 (𝑥𝑚𝑠𝑡−1 |𝑥

𝑚𝑠
𝑡 , 𝑥𝑜𝑏0 ).

In particular, 𝝁𝜃 (𝑥𝑚𝑠𝑡 , 𝑡 |𝑥𝑜𝑏0 ) = 𝝁𝐷𝐷𝑃𝑀 (𝑥𝑚𝑠𝑡 , 𝑡, 𝝐𝜃 (𝑥𝑚𝑠𝑡 , 𝑡 |𝑥𝑜𝑏0 )) and
𝜎𝜃 (𝑥𝑚𝑠𝑡 , 𝑡 |𝑥𝑜𝑏0 ) = 𝜎𝐷𝐷𝑃𝑀 (𝑥𝑚𝑠𝑡 , 𝑡), where 𝝁𝐷𝐷𝑃𝑀 (·) and𝜎𝐷𝐷𝑃𝑀 (·)
are the parameterization functions in denoising diffusion probabilis-
tic models (DDPM) [14]. Then, given 𝝐𝜃 and 𝑥𝑜𝑏0 , we can sample
𝑥𝑚𝑠0 in the reverse process in Equation 2, where 𝝐𝜃 is trainable.
Training. Since we do not have the ground-truth missing values,
we first do zero imputation for the missing data, and then we ran-
domly partition the observation 𝑥𝑜𝑏0 into two parts: the conditional
observation 𝑥𝑜𝑏0 , and the masked target that needs imputation 𝑥𝑚𝑠0 .
Our model is then trained in a self-supervised learning manner [10]
to do data imputation for 𝑥𝑚𝑠0 given 𝑥𝑜𝑏0 , and the imputation perfor-
mance is evaluated on 𝑥𝑚𝑠0 . With the formulated forward process
and the reverse process, the training process optimizes the log-
likelihood in the reverse process by maximizing the variational
lower bound. The training is performed for all diffusion steps. and
it is trained by minimizing the simplified objective function:

min
𝜃

L = E𝝐∼N(0,𝑰 ) | |𝝐 − 𝝐𝜃 (𝑥𝑚𝑠𝑡 , 𝑡 |𝑥𝑜𝑏0 ) | |22 (3)

.
Inference. When the training is done, we have good modeling of
𝑝𝜃 (·). Given the real observation 𝑥𝑜𝑏0 as the conditional observation,
we could impute the missing data 𝑥𝑚𝑠0 with the reverse generation
process 𝑥𝑚𝑠

𝑡−1 ∼ 𝑝𝜃 (𝑥
𝑚𝑠
𝑡 |𝑥𝑜𝑏0 ) according to Equation 2.

For each sample with missing data, we generate 100 data impu-
tations and take their median as the final imputed results. The data
imputation is conducted over the whole dataset before training the
downstream failure prediction models.
Speed up. As shown in Figure 2, DMs suffer from slow sampling
as they require a large number of diffusion steps𝑇 of running large
neural networks to draw one sample [23], which makes it ineffi-
cient and impractical for data imputation in industry and becomes a
bottleneck for the downstream tasks. Inspired by recent work [23],
we speed up the data imputation by reducing the diffusion steps in
the reverse process without any further training. The sampling of
DMs in the reverse process can be viewed alternatively as solving
corresponding ordinary differential equations (ODEs) [16, 34], and
the sampling process is done by ODE solvers [3, 23] which results
in high-quality and few-step sampling. Specifically, the noise sched-
uler in 𝝁𝜃 (·) and 𝜎𝜃 (·) is updated by the ODE solver, and we adopt
a uniform step size schedule to determine𝑀 (≪ 𝑇 ) steps. Then the
diffusion steps 𝑇 in the reverse process is reduced to𝑀 steps.

3 EXPERIMENTS
3.1 Experimental Settings
The data we used for experiments were collected from theMicrosoft
365 online service system in recent 6 months. The data is in the
SMART format (Self-Monitoring, Analysis and Reporting Technol-
ogy) [2], which records the disk status and provides important
indicators during the lifetime of disks. We predict the disk failure
based on 72-hour data. All experiments are performed on a work-
station equipped with AMD EPYC 7V12 64-Core CPUs, NVIDIA
Tesla T4 GPU with CUDA 10.1, and running Linux (16.04.5) OS.
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3.2 Baselines
Following the previous work [12, 27, 36], we use imputation base-
lines as follows:
Zero imputation (Z): Zero imputation replaces the missing data
with zero, which is the most intuitive way.
Forward imputation (F): Forward imputation [19] is a single im-
putation method that replaces the missing data with the previously
observed value.
Linear interpolation (L): Linear interpolation [31] interpolates
the missing data by linear curve fitting.
BRITS: BRITS [5] is an RNN-based approach that utilizes a bi-
directional recurrent neural network that handles the missing data
considering the forward and backward temporal dependency.
Variational Autoencoders (VAE): VAE [12, 17] is a generative
model that learns a probability distribution representing the data,
and the missing data is sampled from the estimated distribution.

Following the previous work on disk failure prediction [21, 25],
we use the downstream prediction baselines: long short-term mem-
ory (LSTM) [38], Transformer (Trans) [25], and temporal convolu-
tional neural network (TCNN) [35].

3.3 Experimental Results
In this section, we aim to address three research questions:
• RQ1: Do the diffusion and Diffusion+ models impute miss-
ing data effectively?
As mentioned in Section 2.2, we randomly mask parts of the

observation 𝑥𝑜𝑏0 as the imputation target 𝑥𝑚𝑠0 , and we train and
evaluate data imputation models with 10%, 50%, 90% masked miss-
ing ratio following previous work [36]. Note that Z, F, and L are
rule-based methods without training, and we list them for reference.

We first present the quantitative results. We adopt two metrics
following previous work [36] to evaluate the performance of data
imputation, i.e., MAE (mean absolute error) and CRPS (continuous
ranked probability score), where CRPS [28] is usually used to mea-
sure the compatibility of an estimated probability distribution with
an observation. For the deterministic imputation methods, i.e., Z,
F, L, and BRITS, we only use MAE since they are not probabilis-
tic imputation methods. As for probabilistic imputation methods
(VAE, Diffusion, and Diffusion+), we generate 100 samples for each
missing data sample to estimate the probability distribution of the
missing data with the metric CRPS. The MAE of the probabilistic
imputation methods is computed using the median of 100 generated
samples. Note that the data are normalized within each feature di-
mension in the evaluation. As shown in Table 1, the diffusion model
has the lowest MAE, 49%-95% less compared with baselines. It sug-
gests that the diffusion model is more effective in capturing the
feature and temporal dependency. The diffusion model also shows
the lowest CRPS metric compared with VAE, which indicates its ca-
pability of generating more realistic distributions. Diffusion+ model
has a very close performance as the diffusion model, i.e., second
best, in general (excluding models trained under 90% missing ratio).
Most imputation approaches have better performance with smaller
missing ratios since more observations are available. Thus, we use
the models trained under the 10% missing ratio for imputation, i.e.,
models with the best performance trained with three missing ratios.

Table 1: Data imputation performance evaluated with MAE
and CRPS (lower is better). CRPS is only available for proba-
bilistic imputation methods.

Approach
Mssing Ratio (%)

10 50 90
MAE CRPS MAE CRPS MAE CRPS

Z 0.429 — 0.428 — 0.429 —
F 0.047 — 0.057 — 0.111 —
L 0.063 — 0.064 — 0.068 —

BRITS 0.052 — 0.054 — 0.081 —
VAE 0.039 0.613 0.045 0.616 0.075 0.648

Diffusion 0.020 0.049 0.021 0.040 0.053 0.131
Diffusion+ 0.025 0.046 0.034 0.068 0.099 0.253

Figure 3: Two data imputation examples of VAE, Diffusion,
and Diffusion+. Each example is a time series sample of one
feature. The red crosses represent observed values and the
blue dots represent the masked observation data for imputa-
tion targets. The shaded areas are 5% and 95% quantiles and
the line is the median value of imputation.

We also provide imputation examples (shown in Figure 3). The
diffusion and Diffusion+ models generate imputations with high
confidence and the imputation distributions tightly cover masked
missing targets (blue dots). VAE imputations have larger variations
and cannot cover the missing targets.
• RQ2: Does data imputation contribute to improving the
downstream disk failure prediction task?

We impute the ground-truth missing data in the entire dataset and
feed the imputed data to downstream failure prediction tasks. As
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Table 2: Failure prediction performance with different data
imputation methods on three metrics, i.e., precision, recall,
and F1-score.

Approach Precision Recall F1-score

Z+LSTM 60.00 50.45 54.81
F+LSTM 64.69 46.41 54.05
L+LSTM 59.13 44.74 50.94

BRITS+LSTM 61.20 50.22 55.17
VAE+LSTM 62.07 52.84 57.08

Diffusion+LSTM 66.75 55.49 60.60
Diffusion++LSTM 65.96 54.23 59.52

Z+Trans 62.84 51.57 56.65
F+Trans 68.15 47.98 56.32
L+Trans 62.87 48.21 54.57

BRITS+Trans 64.81 52.92 58.26
VAE+Trans 66.85 52.45 58.78

Diffusion+Trans 74.05 53.59 62.18
Diffusion++Trans 72.01 52.34 60.62

Z+TCNN 60.60 50.00 54.79
F+TCNN 61.05 50.66 55.37
L+TCNN 59.44 47.55 52.83

BRITS+TCNN 60.61 50.32 54.99
VAE+TCNN 60.50 54.64 57.42

Diffusion+TCNN 79.24 48.31 60.03
Diffusion++TCNN 72.93 49.78 59.17

shown in Table 2, with all prediction methods, the diffusion imputa-
tion model achieves the best performance in precision and F1-score,
and also in recall for most cases. In the domain of cloud failure pre-
diction, F1-score is the most important metric [21, 27]. Diffusion+
shows a very close performance as the diffusion model in F1-score,
and it demonstrates the second best of all the other approaches.
Compared with different prediction methods, Trans achieves the
best performance in F1-score. Note that we use advanced failure
prediction models in practice [21, 25], which have better prediction
performance than the prediction baselines.
• RQ3: Does our Diffusion+ model speed up the sampling
process in diffusion models?
Diffusion models suffer from slow sampling issues since generat-

ing one sample requires a large number of diffusion steps. Diffusion+
model aims to speed up the sampling process with only a few
sampling steps without degrading the performance too much. As
discussed in RQ1 and RQ2, Diffusion+ model achieves similar per-
formance as the diffusion model. Then we conduct the analysis on
time cost for imputing each sample. Figure 4 shows the averaged
time cost of data imputation for each data sample. As the diffusion
step 𝑇 grows, the time cost for the diffusion model increases ac-
cordingly, while Diffusion+ has a stable time cost that needs far
fewer diffusion steps and it has at least 4× speed up, and the speed
up is more obvious with the increase of diffusion steps.

4 APPLICATION IN PRACTICE
We have run our Diffusion+ model for one month on Microsoft
365, which contains millions of disks. In particular, our model takes

Figure 4: The time cost (ms) for each diffusion imputation.

effect in the data process phase of the current disk failure prediction
pipeline [21]. The SMART data is first collected by a data collection
service, transferred by a distributed streaming tool, and stored in
Azure. Then, our model imputes missing data before sending it to
the feature engineering of the downstream prediction tasks. We
conduct A/B testing to measure the effectiveness of our model and
its contribution to service reliability. We monitor the reduction
of virtual machine (VM) interruptions by taking proactive failure
mitigation based on the prediction. Compared with the original data
process phase without Diffusion+, the interruptions have reduced
the VM interruptions and enhanced the service reliability to avoid
potential financial loss.

5 RELATEDWORK
Cloud failure prediction. There exist many studies on cloud fail-
ure prediction [4, 13, 29], and they are commonly treated as binary
classification problems [21]. They use collected monitoring metrics
from services in a time window to predict whether there will be a
failure in the near future. They can capture temporal dependency
to make a good prediction. However, missing data is a critical issue
for these approaches since it requires the prediction models to infer
missing information, and it usually results in poor prediction per-
formance [1, 11]. Our paper is orthogonal to these failure prediction
methods, and it offers a new perspective to improve cloud failure
prediction by enhancing the data quality.
Time series data imputation.Time series data imputation is a rich
topic [20]. In particular, deep learning models including RNN-based
approaches [5, 7, 22] and generative models [12, 26, 36] can capture
the temporal dependency of the time series and generate better data
imputation than rule-based and statistical methods. Different from
these methods, our paper not only evaluates the imputation quality
but also focuses on the end-to-end performance of data imputation
with practical industrial problems, i.e., disk failure prediction, and
we speed up the diffusion-model-based data imputation to make it
applicable in industry.

6 CONCLUSION
In this paper, we focus on enhancing the data quality for disk failure
prediction by imputing missing data. We propose our Diffusion+
model based on diffusion models which imputes missing data ef-
fectively and efficiently. Our experiments on industrial datasets
collected in Microsoft 365 and A/B testing show that our model
outperforms baselines with fast sampling speed and contributes
to enhancing the failure prediction tasks, and then improving the
reliability of the Microsoft 365 cloud platform.
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