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Abstract
This paper first presents CycleDance, a novel dance style transfer system that transforms an existing motion clip in one dance
style into a motion clip in another dance style while attempting to preserve the motion context of the dance. CycleDance
extends existing CycleGAN architectures with multimodal transformer encoders to account for the music context. We adopt
a sequence length-based curriculum learning strategy to stabilize training. Our approach captures rich and long-term intra-
relations between motion frames, which is a common challenge in motion transfer and synthesis work. Building upon
CycleDance, we further propose StarDance, which enables many-to-many mappings across different styles using a single
generator network. Additionally, we introduce new metrics for gauging transfer strength and content preservation in the
context of dance movements. To evaluate the performance of our approach, we perform an extensive ablation study and a
human study with 30 participants, each with 5 or more years of dance experience. Our experimental results show that our
approach can generate realistic movements with the target style, outperforming the baseline CycleGAN and its variants on
naturalness, transfer strength, and content preservation. Our proposed approach has potential applications in choreography,
gaming, animation, and tool development for artistic and scientific innovations in the field of dance.

Keywords Style transfer · Dance motion · Multimodal learning · Generative models

1 Introduction

Style transfer methods facilitate and streamline the art cre-
ation process for media such as images [1] and music [2].
Similar techniques in the field of dance show promise for
enabling creators, such as choreographers and dancers, to
generate variations across different movement styles, lever-
aging an existing dance sequence as a starting point. In a
video game context, these style variations may e.g. be asso-
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ciated with different characters with unique attributes or
personalities. In a choreographic context, style transfer may
lead to hybrid human-artificial creative processes that com-
bine human and artificial intelligence, where choreographers
can use a tool to iterate over interesting, unexpected, or com-
plementary variations of the initial choreographic material.
For example, a choreographer could use style transfer to gen-
erate variations of a particular dance sequence and then select
the most interesting variations to incorporate into the final
choreography.

Existing studies on human movement style transfer pri-
marily focus on simple locomotive or exercise motions [3,
4] and domain transfers between adults and children [5].
Technical methods including cycle-consistent adversarial
networks (CycleGAN) [6] and adaptive instance normal-
ization (AdaIN) [7] have been employed to transfer such
sequential data. However, a research gap remains in applying
these techniques to enable style transfer for more com-
plex movements, particularly in the domain of dance. Dance
movements usually have no explicit functional purpose and
tend to exhibit a considerable richness in posture, rhythm, and
their composition. Consequently, generating dance move-
ments can be particularly challenging, as it requires a
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Fig. 1 Dance style transfer using CycleDance between two different dance styles: locking dance and ballet-jazz dance. The CycleDance framework
is trained with unpaired dance motion and music context, enabling it to generate realistic dance movements faithful to the target style

multi-layer approach that captures the coordination of joint
dynamics and the socio-cultural factors associated with the
production and perception of the movement. At the same
time, diverse characteristics can be found within differ-
ent dance styles, stemming from distinct historical origins.
Dance styles could be thought of more generally as styles
of performing certain dance movements rather than strictly
dance genres. This adds another layer of complexity to the
generation of high-quality dancemovements of a specific tar-
get style. All these challenges call for computational models
that can capture both high-frequency features and long-term
dependencies over time, and as such generate realistic dance
with aesthetic and coherence.

In addition, dance is commonly accompanied by music,
which can provide tremendous clues for understanding and
composing movement. Recent studies have investigated the
effectiveness of music-conditioned dance synthesis, which
can generate dance motion directly from musical context [8,
9]. However, it is unclear whether music context will also
facilitate style transfer tasks. Further research is needed to
determine how multi-modal input should be processed in
the context of dance style transfer, and to identify the most
effective methods for incorporating music.

In this paper, we present CycleDance, a multimodal sys-
tem for dance style transfer (see Fig. 1). CycleDance adopts
a generative approach by extending CycleGAN-VC2 [10]
to work with unpaired data. To facilitate high-quality style
transfer, we leverage a cross-modal transformer architec-
ture [8] that effectively captures relevant features across
different modalities. Specifically, we design a two-pathway
transformer-based architecture to extract temporally aligned
motion and music representations in the context of style
transfer. A progressive curriculum learning scheme inspired
by Fu et al. [11] is adopted to mitigate instability and pre-
mature convergence in training large adversarial models. To
assess the quality of dance style transfer quantitatively, two
new metrics based on probabilistic divergence and selected
key pose frames are proposed. We also sought subjective

evaluations and insights from a group of human participants
with extensive experience in dance, providing quantitative
analysis based on valuable experts’ feedback. Our evalu-
ations show that our proposed approaches outperform the
baseline method and its ablative versions, achieving signifi-
cant improvements in both the proposed metrics and subjec-
tive evaluations. The qualitative examples can be accessed at
the following URL: https://youtu.be/kP4DBp8OUCk.

This paper is an extended version of our conference paper
[12], where the notion of CycleDance was introduced for the
first time. In the present paper, we give a more detailed pre-
sentation of the method design of CycleDance and related
research. In addition, we propose a new model StarDance
as the multi-domain extension of CycleDance for transfer
between more than two styles. CycleGAN-based methods
often require training of k (k − 1) generators to learn all
mappings among k domains, resulting in slow training and
limited generalization to new domains [13, 14]. To address
these issues, StarDance is designed as amany-to-many dance
style transfer method to effectively capture the complexities
of dance movements and styles, following a similar idea in
the image transfer domain [13, 14]. StarDance uses a sin-
gle generator that is conditioned on both music context and
style attribute, independent of the number of styles and hence
alleviating the scalability issue of original CycleDance. New
results on StarDance show that the new framework enables
transfer styles among multiple dance styles without adding
more models (Fig. 2).

In summary, our main contributions are as follows:

• To the best of our knowledge, CycleDance is the first
approach to combine complex dance motion and music
context in the style transfer task, unlocking potential
applications in choreography, gaming, and animation, as
well as in tool development for artistic and scientific inno-
vations in the field of dance.

• For evaluation, we introduce new metrics based on prob-
abilistic divergence and selected key pose frames for
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gauging transfer strength and content preservation in the
context of dance movements.

• We also provide an extensive user study of the proposed
models. The evaluations and insights from a group of
experienced dance performers reveal essential aspects of
designing future systems for dance style transfer.

2 Related work

In this section, we first provide an overview of prior works on
general style transfer in Sect. 2.1, including image, audio, and
text style transfer. Then, we focus on motion style transfer in
Sect. 2.2.We also reviewmotion synthesis frommulti-modal
data in Sect. 2.3.

2.1 Style transfer

In recent years, style transfer has achieved impressive
progress across various fields, including computer vision,
speech and music processing, natural language processing,
motion animation, etc.

In the field of computer vision, the pioneering work
of Gatys et al. [1] introduces the concept of style trans-
fer and leverages the hierarchical layers in convolutional
neural networks (CNNs) to extract both the underlying
content structures and stylistic elements. They utilize an
optimization-based technique to transfer styles between arbi-
trary images. Later, Li et al. [15] propose whitening and
coloring transform (WCTs) to stylize images by analyzing
second-order correlations of content and style features.More
generally, Huang et al. [16] introduce an adaptive instance
normalization (AdaIN) layer to solve the challenge of arbi-
trary target style application in image style transfer, which
has been broadly adopted to fuse the style and content infor-
mation for image generation and image-to-image translation
[17–19]. Zhu et al. [6] introduce CycleGAN which uses a
pair of generators and discriminators to learn the mapping
between two unpaired image domains. This general idea has
been further developed in StarGAN [13], which incorpo-
rates domain labels as additional input and enables image
style transfer among multiple corresponding domains, such
as facial appearances and expressions.

Voice conversion (VC) refers to a technique of converting
non-linguistic or para-linguistic information from the origi-
nal speech into the desired target speech while retaining the
linguistic content unchanged. While some early VC frame-
works have achieved success [20, 21], they rely on precisely
aligned parallel data of source and target speech. To address
this challenge, researchers have turned to non-parallel VC
techniques. For example, Hsu et al. [22] construct a VC
system from non-parallel speech with variational autoen-
coders and Wasserstein GANs. Kameoka et al. [23] build

an auxiliary classifier VAE with information-theoretic reg-
ularization for the model training. Kaneko and Kameoka
[24] propose CycleGAN-VC, which is a variation of the
CycleGAN architecture using gated CNNs and an identity-
mapping loss. This was later improved by CycleGAN-VC2
[10] with the addition of a 2-1-2D convolution structure and
two-step adversarial losses to improve performance. This
approach has also been extended to a StarGAN-based archi-
tecture to enable many-to-many mappings across different
domains [14, 25]. Fu et al. [11] incorporated transformers and
curriculum learning in voice conversion to facilitate training
efficiency.

With the development of MIDI format parsing, research
has also been carried out to transfer symbolic music styles,
as demonstrated by studies such as Groove2Groove [26],
which employs an encoder-decoder architecture and paral-
lel data, and Malik et al. [27] that introduce StyleNet with
a shared GenreNet, which aimed to learn various styles for
music translation. Brunner et al. [2] use a CycleGAN-based
approach for MIDI music. Ding et al. [28] design Steely-
GAN, a symbolic-domain transfer approach that combines
both pixel-level and latent-level features. Regarding style
transfer in natural language processing (NLP), Mueller et
al. [29] propose recurrent variational auto-encoders (VAE) to
modify text sequences. Fu et al. [30] develop amulti-decoder
and style-embedding model using adversarial networks to
learn content and style representations. Dai et al. [31] pro-
pose a Style Transformer network with a tailored training
scheme that integrates an attention mechanism and makes
a latent representation-agnostic assumption. Finally, Xu et
al. [32] introduce a cycled reinforcement learning approach
focusing on unpaired sentiment-to-sentiment translation.

Our research focuses on transferring motion data, specif-
ically dance movements. We use the CycleGAN-VC2 back-
bone, originally designed for voice conversion, as our foun-
dation. To improve scalability, we extend the model to a
StarGAN-based framework. We also augment an additional
music modality in our approach to improve the training per-
formance.

2.2 Motion style transfer

Motion style transfer has been a longstanding challenge in the
field of computer animation, which involves transferring the
motion style of a source animation to a target animationwhile
preserving the key content, such as its structure, timing, spa-
tial relationships, etc. Prior research in motion style transfer
relied on handcrafted features [33–38]. Since style is a chal-
lenging attribute to define precisely, most modern studies
advocate data-driven approaches for feature extractions [4,
39–45]. Commonly used models for style transfer include K
nearest neighbors (KNNs) [46], convolutional auto-encoders
[39], temporal invariant AdaIN layers [5], CycleGAN [45],
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spatial-temporal graph neural networks [44], and autore-
gressive flows [47]. Furthermore, certain studies focus on
the issue of efficient real-time style transfer [41, 43, 46].
However, it should be noted that all these studies focus on
relatively simple human movements, such as exercise and
locomotion, where the stylistic variation is often limited. For
example, the transfer between children and adult locomo-
tion [45]. In contrast, our work deals with the transfer of
dance movements that possess a significant level of com-
plexity in terms of postures, transitions, rhythms, and artistic
styles. Consequently, our research may have more empirical
and practical value for video games or film industries. Given
the intricacies involved, ourmethod differs significantly from
the reviewed research.We utilize transformer and curriculum
learning on top of CycleGAN-VC2 to enable more effective
training on more complex motion data.

Another important task that accompanies the transfer of
motion styles is to evaluate the quality of the synthesized
animation. While subjective surveys help estimate move-
ment quality, such as recruiting a group of dance experts
with defined requirements, relying on them for evaluation can
be expensive, time-consuming, and have low reproducibility
[38]. Utilizing objective metrics for quantitative evaluation
eliminates the need for human involvement, avoiding the
issues associated with subjective surveys. The Fréchet Incep-
tionDistance (FID)metric [48],which has proven effective in
assessing synthesized images in computer vision, has become
a standard in evaluating image generative models. Building
on the success of FID, Wang et al. [49] extended the FID
concept to motion data. Yoon et al. [50] defined the Fréchet
GestureDistance (FGD) as ametric to evaluate speech-driven
gesture generation based on the distance between gesture fea-
ture distributions. Maiorca et al. [38] transform motions into
image representations and introduced the Fréchet Motion
Distance (FMD) to assess the quality and diversity of syn-
thesized motion. Valle-Pérez et al. [8] evaluated the realism
of music-based dance generation by measuring the Fréchet
distance between the distributions of poses and movements.
For the motion style transfer task, we propose a Fréchet Pose
Distance (FPD) based on the distribution of key poses to
assess the content preservation, as well as a Fréchet Motion
Distance (FMD), the Fréchet distance between the distribu-
tion of the true dance motion and the generated dance motion
to evaluate transfer strength.

2.3 Music-conditionedmotion synthesis

Numerous studies have focused on human motion synthe-
sis, utilizing various techniques such as deep feedforward
networks [51], convolutional networks [52], recurrent mod-
els [53], graph neural networks [54], and autoencoders [55].
Dance and music are often intertwined, leading to an emerg-
ing research topic known as cross-modal motion generation.

This field aims to understand the association between differ-
ent modalities better and improve music-conditioned motion
synthesis. Early works in cross-modal motion generation
mostly focused on statistical models [56–58]. Specifically,
these models typically generate motions by selecting pre-
existing dance moves that match particular music features,
such as rhythm, intensity, and structure. With the recent
advances in deep learning and the availability of large-scale
datasets, learning-based methods have been developed to
learn the patterns between music and motion. For example,
ChoreoMaster [9] propose an embedding module to capture
music-dance connections, while in DeepDance [59], a cross-
modal association system is designed to correlate dance
motion with music. Lee et al. [60] propose a decomposition-
to-composition framework that leverages MM-GAN for
music-based dance unit organization. The DanceNet model,
as proposed in [60], uses a musical context-aware encoder
to fuse music and motion features. In DanceFormer [61],
kinematics-enhanced transformer-guided networks are uti-
lized to perform motion curve regression. In a recent work
by Valle-Pérez et al. [8], cross-modal transformers were suc-
cessfully employed to model the relationship between music
and motion distributions.

Music-conditioned dance synthesis refers to the task of
generating dance motion sequences that are synchronized
with a given musical context. In contrast, our work focuses
on the dance style transfer task, which involves manipulating
the style of existing dance movements while preserving con-
textual information. Although our style transfer model does
not require music as an input for conditioning, incorporating
it can enhance the quality of the generated movements.

3 Methodology

This paper aims to explore the problem of transferring
dance styles. This section formulates the target problem
and introduces notations used throughout the paper. A brief
overview of CycleGAN, CycleGAN-VC2, and StarGAN, as
well as relevant preliminaries, are provided to ensure self-
containment and facilitate understanding of the proposed
method. Building on these foundations, we introduce our
novel technical frameworks CycleDance and StarDance. The
StarDance part is not included in the conference version.

3.1 Problem formulation

Our study aims to develop mapping functions between
two distinct domains, denoted as X and Y , without relying
on paired data between these domains. In our scenario, we
focus on the transfer of dancemovements between twodiffer-
ent styles, corresponding to domains X and Y given dance
sample x ∼ PX and y ∼ PY , where x is a sample from
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Fig. 2 The CycleDance architecture is composed of a generator and a
discriminator. The generator consists of a motion pathway and a music
pathway.Both pathways beginwith downsampling blocks followed by a
2D–1D block. The motion, music, and cross-modal transformer blocks

are standard full-attention transformer encoders. The fused pathway is
followed by a 1D–2D block and upsampling blocks. The discriminator
uses convolution in the last layer, following the approach of Kaneko et
al. [10]

Fig. 3 The two-step adversarial generative training strategy, which
involves four types of losses: adversarial loss Ladv, cycle-consistency
loss Lcyc, identity-mapping loss Lid, and second adversarial loss Ladv2.
See Sect. 3.2 for the definition of notations

domain X , drawn from the probability distribution PX , and
y is a sample from domain Y , drawn from the probability
distribution PY . The dance samples may also be accompa-
nied by music, with mx ∈ Mx and my ∈ My , respectively,
with associated styles. The inclusion of music modality is
optional in the style transfer task.

3.2 CycleDance training objective and strategy

To tackle the problem described above, we employ a strategy
inspired byCycleGAN-like framework [6],which is depicted
in Fig. 3. The CycleDance architecture we use incorporates
two discriminators, DX and DY , which differentiate between
real and generated data. In addition, the architecture includes
two mappings, GX→Y and GY→X , which are responsible
for generating patterns in the target style. The mappings are
cycled to enable the generated patterns to be converted back

to their original domains. To achieve this goal, we adopt a
strategy similar to that used in CycleGAN-VC2 [10] and
utilize four types of losses, also see Fig. 3.
Adversarial loss LX→Y

adv : this loss measures the difference
between the transferred data GX→Y (x,mx ) and the target y,
where the discriminator DY distinguishes between the trans-
ferred data and the real data:

LX→Y
adv = Ey∼PY [log DY (y)]

+ Ex∼PX [log(1 − DY (GX→Y (x,mx )))].
(1)

Similarly, we define the adversarial loss LY→X
adv for GY→X

and discriminator DX .
Cycle-consistency loss Lcyc: this loss helps to account for
the loss of contextual information by recovering the origi-
nal x and y from generated patterns, by GX→Y (x,mx ) and
GY→X (y,my), where 1-norm is adopted to minimize the
absolute difference:

Lcyc = Ex∼PX [‖GY→X (GX→Y (x,mx )) − x‖1]
+ Ey∼PY [∥∥GX→Y (GY→X (y,my)) − y

∥
∥
1].

(2)

Identity-mapping loss Lid: this loss further promotes con-
tent preservation by enforcing an identity transformation
when applying GX→Y and GY→X to the other domain:

Lid = Ex∼PX [‖GY→X (x,mx ) − x‖1]
+ Ey∼PY [∥∥GX→Y (y,my) − y

∥
∥
1]

(3)

Two-step adversarial lossLadv2: a second adversarial loss is
used to mitigate the over-smoothing reconstruction statistics
in the cycle-consistency loss [10]:

LX→Y→X
adv2 = Ex∼PX [log D′

X (x)]
+ Ex∼PX [log(1 − D

′
X (GY→X (GX→Y (x,mx ))))]

(4)
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Note that this introduces an additional discriminator, denoted
as D

′
X . The lossLY→X→Y

adv2 can be defined in a similarmanner.
The final objective is expressed as a weighted sum of the

above-mentioned loss terms

Lfull = LX→Y
adv + LY→X

adv + λcycLcyc + λidLid

+ LX→Y→X
adv2 + LY→X→Y

adv2 ,
(5)

where λcyc and λid trade off the consistency and identity loss
terms.

In addition, we utilize a curriculum learning algorithm as
a training scheme. The rationale for this is that training can
be made more efficient by initially handling simpler data and
then gradually increasing the complexity of the training task.
Similar strategies have been applied in various applications
and scenarios, demonstrating its ability to improve the con-
vergence rate, generalization capacity, and training stability
[62]. We implement a curriculum learning strategy based on
the length of the data by learning from short samples to longer
ones as the training process progresses. The training data are
truncated by following the method in [11].

3.3 StarDance training objectives and strategy

While CycleDance allows for generation of dancemovement
when a sufficient number of training examples are available,
one limitation is that it only learns one-to-one mappings.
New models need to be trained from scratch to transfer a
new pair of dance styles. We thus extend CycleDance to a
StarGAN-based backbone for amore scalable solution called
StarDance. The StarDance architecture has one generator G
and one discriminator D to accommodate for all styles with
the help of an additional domain classifier C . The generator
can take a dance sample x of style attribute cx , with a target
style attribute cy , accompanied by music m, and generate a
target dance sample ŷ = G(x,m, cy). The discriminator D
produces a probability D(x, cx ) that can be used to distin-
guish between real and transferred data, while the additional
domain classifierC in StarDance is designed to predictwhich
style an input dance sequence belongs to. Here we represent
c as a one-hot vector, where each element is associated with
a dance style. Similar to CycleDance, we define four types of
losses in StarDance, as well as a domain classification loss
for the classifier.
Adversarial loss Ladv:

Ladv = Ex∼PX [log D(x, cx )]
+ Ex∼PX [log(1 − D(G(x,m, cy), cy))]. (6)

Cycle-consistency loss Lcyc:

Lcyc = Ex∼PX [∥∥G(G(x,m, cy),m, cx ) − x
∥
∥
1]. (7)

Fig. 4 The training strategy of StarDance, which involves five types
of losses: adversarial loss Ladv, cycle-consistency loss Lcyc, identity-
mapping loss Lid, second adversarial loss Ladv2, and domain classifi-
cation loss Lcls. See Sect. 3.3 for the definition of notations

Identity-mapping loss Lid:

Lid = Ex∼PX [‖G(x,m, cx ) − x‖1] (8)

Two-step adversarial loss Ladv2:

Ladv2 = Ex∼PX [log D′
X (x)]

+ Ex∼PX [log(1 − D
′
X (G(G(x,m, cy),m, cx ), cx )]

(9)

Domain classification loss Lcls:

Lcls = Ex∼PX [− logC(cx | x)]
+ Ex∼PX [− logC(c | G(x,m, cy))]. (10)

To summarize, the full objective of StarDance to be min-
imized with respect to G, D, and C is given by

Lfull = Ladv + λcycLcyc + λidLid

+ Ladv2 + λclsLcls,
(11)

where λcyc, λid, and λcls are regularization parameters to
weight the losses. The training strategy of StarDance is illus-
trated in Fig. 4. With the StarDance architecture, there are
fewer coefficients to tune, given a more compact generator.

3.4 Network architecture

Our Cycle/StarDance framework builds upon a cross-modal
transformer, as illustrated in Fig. 2. In the CycleDance
framework, the cross-modal transformer is employed to con-
catenate motion and music encodings, both of which are
obtained through a sequence of layers including 2D con-
volution (purple blocks in Fig. 2), 2D–1D reshaping (red),
residual convolution (green), and modality-specific trans-
formers (yellow). The 2D convolutional layers are utilized
for downsampling while keeping the sequential structure of
the input data. The resulting downsampled features are then
reshaped andpassed through the residual blocks of 1DCNNs.
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The reshaped 1D sequences are further processed by trans-
formers, which use a position embedding to output encodings
that capture temporal relationships among timesteps. Finally,
the generator takes the concatenated encodings and feeds
them into a 1D–2D reshape block (red) and an upsam-
pling block (purple) to synthesize transferred dance motions.
Within these blocks, we employ gated linear units (GLUs)
[63], a tunable activation function, to learn hierarchical and
sequential structures. In our StarDance framework, the trans-
former is adapted to incorporate style labels. Before feeding
the concatenated encodings into the 1D–2D reshape block,
we concatenate the encoded features and style attribute along
the channel dimension.

For the discriminator, CycleDance first downsamples the
motion data with a 2D CNN. We adopt the same approach
as proposed in [10] and use convolution only at the last layer
of the discriminator to alleviate training instability. The out-
put layer of the discriminator employs a sigmoid activation
function to make the final prediction on the motion clip.
Similarly, the StarDance discriminator first concatenates the
motion data and the style attribute along the channel dimen-
sion before the downsampling block.

We also devise a domain classifier in StarDance, which
downsamples a motion data input with 2D CNNs and pro-
duces a sequence of class probability distributions at the
last layer that predicts how likely the motion sequence is
to belong to the respective style attributes.

3.5 Training details

We implement and train the Cycle/StarDance model with
the PyTorch-Lightning framework, with Adam optimizers
used for training. The batch size is fixed to 1, given that
batch_si ze = 1with instance normalization achieves invari-
ance to mean and variance of features, which is beneficial for
the style transfer task.Weset the initial learning rate of 0.0002
for the generator and 0.0001 for the discriminator and domain
classifier, with momentum terms of 0.5 for both optimizers.
As for loss weights, we set λcyc = 10, λid = 5, and λcls = 5.
The identifying-mapping loss Lid is only active for the first
104 iterations for regulating consistency in the initial training
stage. Our framework adopts a curriculum learning strategy
to alleviate the challenges of training models for extremely
long sequential data. Specifically, we gradually increase the
sample length from 32 frames to 800 frames, adding 8 frames
to data fragments every 500 epochs. In total, we train the
entire framework for 5 × 105 iterations.

4 Experiments and evaluations

To demonstrate the capabilities of our proposed approach,
we compare it to baseline models and ablations on a large

dance dataset. This section begins with a description of the
dataset used in our experiments, as well as the processing
steps and the experimental setup (Sect. 4.1). We then pro-
vide details about our objective (Sect. 4.3) and subjective
(Sect. 4.4) evaluations, which aim to benchmark different
dance style transfer methods and ablations. We present the
results of our evaluations and discuss their implications.
Demonstrations of our novel framework are available at
https://youtu.be/kP4DBp8OUCk. Extending the conference
version, we append the details of the evaluation metrics, the
results of StarDance and the accessibility to our preprocessed
data, as well as the user study questionnaire.

4.1 Dataset

We utilize the AIST+ Dance Database [42] as our source
of data to generate 3D dance motion samples with paired
music. The AIST++ database reconstructs 3D motions with
SMPLparameters frommulti-viewvideos in theAISTDance
Database [64], a large-scale dance video database contain-
ing various dance genres recorded by professional dancers.
To extract motion features, we first downsample all motion
data to 30 frames per second (fps) and retarget it to a
21-body-joint skeleton using Autodesk MotionBuilder. We
adopt exponential map parametrization to represent the 3D
rotation of all joints. The root joint (hip) is characterized
by four additional features representing changes in the ver-
tical root position, ground-projected position, and 2D facing
angle. Consequently, a 67-dimensional vector is employed
to represent the motion features of each frame. The music
features are extracted with the Librosa toolbox in a similar
way to [64]. We combine 20-dim MFCC, 12-dim chroma,
1-dim one-hot peaks, and 1-dim one-hot beats, resulting in
a total 35-dim audio feature. Six dance genres were selected
for analysis based on suggestions from professional dancers
we recruited, specifically ballet-jazz, locking, hip-hop, pop,
waacking, and house dance. Each dance set consists of 141
motion sequences and six songs, spanning approximately
2000s in total.Wemake the preprocessed data publicly avail-
able at https://urlis.net/aist to further facilitate research in the
community.

4.2 Baselinemodels and ablations

To evaluate the impact of design choices such as the cross-
modal transformer and curriculum learning strategy, we
compare our proposed CycleDance and StarDance models to
the CycleGAN-VC2 baseline. Additionally, we implement
three alternative architectures for an ablation study. In the
first ablation configuration, CycleTransGAN, we eliminate
the music pathway, cross-modal transformer, and curriculum
learning strategy. Our aim is to highlight the effectiveness
of the transformer architecture we introduced. In the Cycle-
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TransGAN+CLablation,we apply curriculum learning to the
CycleTransGAN model. We aim to gauge the performance
gains achieved by meticulously modulating the complexity
of the samples used to train the model. The final ablation,
CycleCrossTransGAN, employs cross-modal transformers
for motion and music information in the encoder without
using the curriculum learning strategy. Through this abla-
tion, we aim to evaluate the influence of the cross-modal
transformers by comparing the discrepancies betweenCycle-
TransGAN and CycleCrossTransGAN.

4.3 Objective evaluation

The primary objective of all these models is to transfer the
dance style froma specified source to a particular target dance
style. We conduct assessments from both objective and sub-
jective perspectives to ensure a comprehensive evaluation
of the complex motion patterns common in dance. For the
objective evaluation, we analyze 17 dance sequences for each
style. Style transfer was performed on each ablated model,
and two metrics were used to evaluate the performance on
transfer strength and content preservation. The two metrics
are designed based on Fréchet distance, which is computed
by Eq.12:

FID = ‖μr − μg‖22 + Tr(�r + �g − 2
√

�r�g), (12)

where (μr , �r ) and (μg, �g) are, respectively, the mean and
the covariance matrix of the real and generated dance move-
ment distribution.

Transfer strength The transfer strength, which measures
the extent that the source style is converted to the target style,
is the most crucial aspect of style transfer. Specifically, we
adopt the Fréchet distance between the true and generated
dance motion distributions. To capture features that are more
style-correlated such as intensity, we utilize joint velocity
and acceleration. To be specific, we use pairs of consecutive
raw poses without normalization (xi−1, xi ) to convert the
pose representations to joint velocity vi . Similarly, we use
triples of consecutive poses (xi−1, xi , xi+1) to estimate the
joint acceleration ai . We refer to this metric as the Fréchet
motion distance (FMD),which is used to quantify the transfer
strength between the generated motion and target style.

Content preservation We use the Fréchet pose distance
(FPD) as a measure of content preservation, which evaluates
how well the salient poses of the original dance movement
are preserved after the transfer. For this dimension, we use
the Fréchet distance between distributions of key poses xk
for a given dance movement. We detect frames presenting
local maxima in joint acceleration as the key frames that
segment the full dance movement. To ensure comparability
across frames, key poses in these frames are normalized with
respect to the hip-centric origin.

Fig. 5 An example of transferring locking dance sequences (top, blue
y-bot) to ballet-jazz dance using CycleGAN-VC2 (middle, red x-bot)
and CycleDance (bottom, red x-bot)

Fig. 6 An example of transferring ballet-jazz dance sequences (top, red
x-bot) to locking dance using CycleGAN-VC2 (middle, blue y-bot) and
CycleDance (bottom, blue y-bot)

In Table 1, we present the quantitative results of the
proposed model and ablations for style transfer across
three pairs of dance genres in both directions. These pairs
include ‘ballet-jazz to locking dance’ (BJ2LC) and ‘locking
dance to ballet-jazz’ (LC2BJ), ‘waacking to hip-hop dance’
(WK2HP) and ‘hip-hop to waacking dance’ (HP2WK), as
well as ‘pop to house dance’ (PO2HO) and ‘house to pop
dance’ (HO2PO).

The baseline model, CycleGAN-VC2, appears to struggle
with the style transfer task for locking dance to ballet-jazz,
as evidenced by the significantly higher MFD compared
to all other ablation methods. The complete framework,
CycleDance, outperforms all other ablation methods and
achieves the best performance on both metrics and almost
all transfer pairs. This emphasizes the necessity of all intro-
duced techniques in this task.

Figure 5 presents an example of a synthesized motion clip
that demonstrates the transfer of dance style from locking to
ballet-jazz. An example of style transfer from ballet-jazz to
locking dance is shown in Fig. 6. The top keyframe sequence
shows the original locking dance. The middle sequence is
generated by the baseline model, CycleGAN-VC2, while the
bottom sequence is generated by the proposed CycleDance.
By comparing the poses of each column in these two fig-
ures, it can be observed that the extracted key gestures are
representative of the pose sequences. Notably, CycleDance
achieves a higher similarity to the source gestures, preserv-
ing more content while aligning better with the target dance
style.

123



Multimodal dance style transfer Page 9 of 14 48

Ta
bl
e
1

Q
ua
nt
ita

tiv
e
ob

je
ct
iv
e
ev
al
ua
tio

n

M
et
ho
d

FM
D

FP
D

B
J2
L
C

L
C
2B

J
W
K
2H

P
H
P2

W
K

PO
2H

O
H
O
2P

O
B
J2
L
C

L
C
2B

J
W
K
2H

P
H
P2

W
K

PO
2H

O
H
O
2P

O

C
yc
le
G
A
N
-V

C
2

9.
94
30

3.
40
63

1.
43
54

1.
26
45

2.
28
41

1.
95
15

0.
48
97

0.
34
99

0.
48
47

0.
33
13

0.
52
12

0.
56
25

C
yc
le
T
ra
ns
G
A
N

3.
56
43

0.
78
86

1.
05
64

0.
94
64

1.
55
15

1.
53
54

0.
47
49

0.
25
01

0.
47
54

0.
28
34

0.
40
48

0.
52
15

C
yc
le
T
ra
ns
G
A
N
+
C
L

2.
91
88

0.
58
48

1.
08
47

0.
98
47

1.
48
52

1.
55
21

0.
48
97

0.
25
43

0.
46
44

0.
28
82

0.
41
25

0.
41
85

C
yc
le
C
ro
ss
T
ra
ns
G
A
N

2.
74
46

0.
58
19

0.
98
72

1.
07
82

1.
42
54

1.
52
51

0.
44
19

0.
22
44

0.
44
90

0.
28
80

0.
38
41

0.
41
26

C
yc
le
D
an
ce

2.
61
09

0.
57
55

0.
87
52

0.
95
01

1.
34
52

1.
48
55

0.
42
16

0.
22
30

0.
44
85

0.
29
60

0.
39
54

0.
38
27

St
ar
D
an
ce

3.
71
53

1.
48
23

1.
28
18

1.
08
93

1.
61
45

1.
58
01

0.
52
17

0.
43
78

0.
47
07

0.
42
67

0.
44
10

0.
41
38

Fr
éc
he
tM

ot
io
n
di
st
an
ce

(F
M
D
)
an
d
Fr
éc
he
tP

os
e
di
st
an
ce

(F
PD

)
ar
e
em

pl
oy
ed

to
ev
al
ua
te
th
e
pe
rf
or
m
an
ce

of
th
e
ba
se
lin

e
m
od
el
,o
ur

pr
op
os
ed

C
yc
le
D
an
ce

m
od
el
an
d
St
ar
D
an
ce

m
od
el
,a
nd

th
e

th
re
e
ab
la
tio

ns
.T

he
ac
ro
ny
m

B
J2
L
C
re
fe
rs
to

th
e
tr
an
sf
er

of
da
nc
e
st
yl
e
fr
om

ba
lle
t-
ja
zz

to
lo
ck
in
g
da
nc
e.
C
or
re
sp
on
di
ng
ly
,L

C
2B

J
de
no
te
s
th
e
re
ve
rs
e
tr
an
sf
er

fr
om

lo
ck
in
g
da
nc
e
to

ba
lle

t-
ja
zz
.

Si
m
ila
rl
y,
W
K
,H

P,
PO

,a
nd

H
O
ar
e
ac
ro
ny
m
s
us
ed

to
re
pr
es
en
tw

aa
ck
in
g,

hi
p-
ho
p,

po
p,

an
d
ho
us
e
da
nc
e,
re
sp
ec
tiv

el
y

In addition, the ablation study revealed that CycleTrans-
GAN (the combination of CycleGAN-VC2 and transformer)
achieved lower FMD scores, suggesting that the model ben-
efited from capturing richer intra-relations among frames
with the help of the transformer. By comparing the results
of ‘CycleTransGAN and CycleCrossTransGAN’, we can
observe an improvement in both FMD and FPD metrics.
This suggests that the music information aids in generat-
ing accurate target-style movements and that this contextual
information is effectively encoded by the cross-modal trans-
former. The comparison between ‘CycleTransGAN and
CycleTransGAN+CL’ as well as ‘CycleCrossTransGAN
and CycleDance’ indicates that curriculum learning greatly
enhances transfer strength. This demonstrates the effective-
ness of gradually increasing the level of difficulty by training
with longer dance sequences.

In Table 1, we also present results from StarDance, which
demonstrates an ability to solve the task of transferring
among multiple dance styles using a more scalable model.
The performance of StarDance exhibits a similar trend to
that of CycleDance. It performs reasonably well on cer-
tain pairs, such as transferring from ’house to pop dance,’
but shows poor performance when transferring from ’ballet-
jazz to locking dance’. The poorer performance in general is
natural, given that CycleDance is specifically trained for par-
ticular pairs of dance styles, whereas StarDance is expected
to cover them all. It is worthwhile to investigate the factors
that influence style transfer in different dance pairs in future
studies.

4.4 Subjective evaluation

To obtain a more comprehensive evaluation of our model
and the baseline, we conducted a user study in addition to
the objective assessment, asking participants to rate three
aspects: motion naturalness, transfer strength, and content
preservation. This study also includes open-ended ques-
tions to gather additional feedback and suggestions for
future work. We make the user study questionnaire publicly
available at https://urlis.net/ques to further support relevant
studies.

Our subjective analysis primarily focuses on the style
transfer between ballet-jazz and locking dance, as these
dance styles are well-established and well-understood by
dance professionals, providing a diverse representation of
the challenges in style transfer. An online survey was per-
formed to evaluate the transfer tasks for both ‘ballet-jazz
to locking dance’ and ‘locking dance to ballet-jazz’, gath-
ering participant feedback. To generate the videos for each
source and target dance sequence, we utilized the Blender
software to create 8-second clips with an x-bot character
(representing ballet-jazz) and a y-bot character (represent-
ing locking dance). During the survey, participants were
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presented with a source dance video clip followed by a
generated target dance clip. Prior to this, an introduc-
tion phase allowed participants to become familiar with
the animated dance through video clips that could be
played. To avoid potential order effects, the order of tar-
get dance clips was randomly selected and balanced. Each
target dance clip was generated either from CycleDance
or from the baseline. The participants were allowed to
view the clips multiple times before answering three ques-
tions:

• Motion naturalness: To what extent do you agree with
the following statement?—The generated motion clip
looks natural after the style transfer. (Likert item ranging
from 1 (strongly disagree) to 5 (strongly agree)).

• Transfer strength: To what extent do you agree with the
following statement?—The generated motion clip looks
like the target dance style. (Likert item ranging from 1
(strongly disagree) to 5 (strongly agree)).

• Content preservation: Which feature(s) do you think is
(are) the most preserved between the original and the
resulting video?—Orientation through space;—Shapes
of the limbs;—Shape of the body trunk;—Rhythmic
patterns—Other: ___. (One or more of these four aspects
could be selected). This list was based on the most
salient features that dance analysts look at when ana-
lyzing expressive movement [65].

During the study, 30 participants equipped with at least 5
years of dance experience, including training, choreograph-
ing, teaching, or performing, were recruited. Participants
in the study were aged between 20 and 41 years (median
30), with 37.9% identifying as male, 58.6% as female, and
3.4% as other. According to the demographic questions, the
participants reported their familiarity with ballet-jazz dance
and locking dance as M=3.93 (SD=1.05) and M=3.03
(SD=1.18), respectively, on a scale from 1 (not at all famil-
iar) to 5 (very familiar). As the generated motions were
presented using virtual characters, we also assessed the fre-
quency at which participants played video games. Results
indicated that 34.5% of participants played video games
weekly, 13.8% played monthly, 13.8% yearly, and 37.9%
rarely.

We performed a statistical analysis of the subjective
responses from the user study to support our findings,
and evaluated whether our proposed method could be fur-
ther enhanced. Based on Fig. 7, the results indicate that
CycleDance received higher ratings from experts than the
baseline model on both motion naturalness and transfer
strength. The Wilcoxon signed-rank test was used to assess
the statistical significance of the subjective responses. The
results showed that both the median value of motion natu-
ralness (Z = −9.2262, p < 0.0001) and transfer strength

Fig. 7 The subjective evaluation results on motion naturalness and
transfer strength, where the error bars represent the standard errors of
the averages. Statistical significancewasdeterminedusing theWilcoxon
signed-rank test, which compares themedians (***means p < 0.0001)

Fig. 8 The subjective evaluation results on content preservation. The
results show that CycleDance outperforms the baselinemodel in several
aspects, including orientation through space, shape of the limbs, shape
of the body trunk, and rhythmic patterns. Statistical significance was
determined using the Wilcoxon signed-rank test, which compares the
medians (*** means p < 0.00001, ** means p < 0.0001, and n.s.
means p > 0.05)

(Z = −8.7677, p < 0.0001) were significantly higher
for CycleDance compared to the baseline model. Therefore,
from the perspective of dance experts, CycleDance is pre-
ferred for its improved naturalness and similarity to the target
dance style, which is consistent with what we observe from
theobjective quantitative results (Sect. 4.3). For the responses
on content preservation, Fig. 8 presents the overall statistics
for the four queried aspects. The experts chose CycleDance
more often than the baseline model on all four aspects, indi-
cating that they believed that CycleDance better preserved
specific features of the source dance style. We conducted
a McNemar test to assess the statistical significance of the
differences between the baseline model and CycleDance.
The test showed no significant differences between the
two models on ‘Orientation through space’ (p = 0.1724)
and ‘Shapes of the limbs’ (p = 0.1573). On the other
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hand, there was a strong statistical significance supporting
the proposed CycleDance for ‘Shapes of the body trunk’
(p = 0.000002) and ’Rhythmic patterns’ (p = 0.00004),
based on the median value. Both CycleDance and the base-
line model received higher scores on rhythmic patterns and
orientation through space among the four aspects evalu-
ated. This suggests preserving dance orientation, and rhythm
is relatively easier when performing dance style transfer.
Preserving the shape of the limbs is found to be more chal-
lenging,where no significant differenceswere foundbetween
CycleDance and the baseline. However, CycleDance out-
performs the baseline in preserving the shape of the body
trunk.

In response to open-ended questions, dance experts pro-
vided feedback that, for the task from ‘ballet jazz to lock
dance,’ both methods produced a jerky style that mim-
icked pop and lock dance. The example illustrated in Fig. 9
is frequently mentioned as a significant instance of suc-
cessful "transfer" with a noticeable locking dance style
from the perspective of experienced dancers. Regarding
the CycleDance samples of transferring ‘locking dance to
ballet-jazz’, the dance experts noted that the character arms
clearly exhibit jazz or ballet characteristics and effectively
maintain traditional shapes. The dance experts also pro-
vided feedback on some limitations of the proposed method.
One common observation is that some generated motions
appear wobbly, indicating a need for applying smoothing fil-
ters to improve the overall quality of the results. Experts
have also pointed out that in jazz ballet, dancers typi-
cally point their toes, whereas the generated movements
always show ankle flexion. This demonstrates the limita-
tion that the available data do not adequately represent the
nuances of foot movements required in ballet-jazz, high-
lighting the need for more comprehensive data collection
in future studies. This limitation also leads to some physi-
cally unrealistic effects, such as the character appearing to
float when their body does not have any contact with the
floor.

5 Discussion of societal impact

We present a style transfer framework that offers both artistic
and scientific contributions to the field of dance. We antici-
pate several potential impacts on industries and society in the
near future. This work has the potential to positively impact
the field of choreography and dance research by unlocking
new possibilities for the hybrid human-artificial co-creation
of dance material. This work could also benefit industries
such as video games and animation. For example, the frame-
work can be used to create group danceswhere each character
has a unique motion style. Such effects could lead to a trans-
formation of the jobmarket, with a shift towards jobs that rely
more on a combination of creativity and automation. Addi-
tionally, it may lead to the development of new user-friendly
interfaces and tools for various industries. However, a poten-
tial negative impact of the technology is that it may blur
the ownership in creative processes, i.e., determining who
should be credited as the creator(s) of the generated dance
movements. Transfer models trained on non-representative
datasets could reinforce movement stereotypes of certain
societal groups by learning a biased association between
group membership and movement styles, e.g., elderly peo-
ple or people with disabilities. This raises concerns about
the potential perpetuation of existing societal biases and dis-
crimination in the application of these models.

6 Conclusion and future work

This study tackles the challenging task of style transfer
for sequential data with intricate variations and complex
frame dependencies, specifically in the domain of dance
movements. To address these challenges, we first pro-
pose CycleDance, which leverages expressive data encoders,
cross-modal contexts, and a curriculum-based training
scheme. We also propose StarDance, which extends the
backbone from the CycleGAN-basedmodel to the StarGAN-
based model to handle more than two dance genres. The
effectiveness of our proposed frameworks is confirmed by

Fig. 9 An illustrative example generated by CycleDance, where ballet-jazz dance (red x-bot) is transferred to locking dance (blue y-bot). The top
panel shows the original ballet-jazz dance motion, while the bottom panel shows the transferred locking dance motion
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quantitative results and human expert evaluations on sim-
ilarity aspects and transfer aspects. To the best of our
knowledge, this is the first work to use music context for
dance or general motion style transfer. Recently, diffusion
models have emerged as a promising approach for gen-
erative modeling, demonstrating state-of-the-art results in
image and video generation tasks. In the future, we plan to
extend our GAN-based style transfer framework to incor-
porate diffusion-based architecture. Research is also needed
to address identified limitations on preserving limb shapes.
We also will explore motion style transfer in video settings.
Based on these techniques, we envision new tools in dance
motion design for choreography, the film industry, and video
games.
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